
One-dimensional drift-diffusion between two absorbing boundaries: application to granular

segregation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 3191

(http://iopscience.iop.org/0305-4470/34/15/301)

Download details:

IP Address: 171.66.16.95

The article was downloaded on 02/06/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 3191–3198 www.iop.org/Journals/ja PII: S0305-4470(01)18258-2

One-dimensional drift-diffusion between two
absorbing boundaries: application to granular
segregation
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Abstract
Motivated by a novel method for granular segregation, we analyse the one-
dimensional drift-diffusion between two absorbing boundaries. The time
evolution of the probability distribution and the rate of absorption are given by
explicit formulae; the splitting probability and the mean first-passage time are
also calculated. Applying the results we find optimal parameters for segregating
binary granular mixtures.

PACS numbers: 0520, 0510, 4570, 6630

1. Introduction

The diffusion phenomena have been one of the most intensively studied fields in statistical
physics. A number of textbooks have been written in this field, and in many of them the one-
dimensional case is discussed in detail [1–4]. The drift-diffusion equation has been studied in
many different contexts even recently [5–8]. Still, according to our knowledge, the problem of
one-dimensional drift-diffusion between two absorbing boundaries has not been completely
solved.

The need for the solution of this problem arose when we investigated the motion of a
granular particle in a vertically vibrated ratchet by means of a 2D computer simulation (see
figure 1).

In the simulation we used an event-driven algorithm with a hard-sphere collision
model [12, 13]. The particles can rotate around the axis going through their centre and
perpendicular to the plane of the box; their moment of inertia is 2/5mr2 about their centre.
Since the mass of the particles does not play a role in collisions with the base but only in
binary collisions, it is enough to specify that the particles have the same mass density, so
m ∝ r3. (For a detailed description of the setup, see [14].) We found that the horizontal
motion of one particle can be well approximated as drift-diffusion (see figures 2 and 3), and
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Figure 1. The setup of the one-particle simulation. The two-dimensional box has an asymmetrical
sawtooth-shaped base, which is sinusoidally vibrated in the vertical direction with amplitude A and
frequency f . The shape of the sawtooth can be described by three parameters: width w, height
h and asymmetry parameter a, which is the ratio of the projection of the left-hand edge onto the
base and w. The particle has five parameters: mass m, radius r , coefficient of restitution ε, friction
coefficient µ and maximum tangential restitution coefficient β0. The boundary condition can be
either periodic, reflective or absorbing.

the parameters of the diffusion process, i.e. the average velocity and the diffusion constant,
depend on the parameters of the particle and the ratchet4. According to our results, it is
possible that the average velocities of two kinds of particles in the same system have opposite
directions. If the boundaries are open (i.e. the absorbing boundary condition is applied), then
this setup is capable of segregating a binary granular mixture of these particles provided that
the load rate is chosen so that only a few particles are in the system at one time (in this case
the interaction between the particles can be neglected, and we do not have the problem that
the transport velocity also depends on the number of particles). Note that in this setup the
segregation is due to the interaction between the ratchet and the individual particles, while
in other granular segregation phenomena the segregation is primarily due to the interaction
between the particles, involving many-body collective effects [9–11]. We need the theoretical
description to predict, for example, the quality of the segregation or the highest possible load
rate, and to further improve the quality by choosing optimal parameters, such as where to load
the granular mixture along the box. The results of the granular binary mixture segregation will
be published elsewhere.

2. The diffusion equation with bias

The dynamics of the diffusing particle is characterized by the diffusion constant D and mean
velocity v �= 0, which is the result of an external field. (The results for the v = 0 case will
be presented later.) The diffusion equation then reads ∂tp(x, t) = D∂2

xp(x, t) − v∂xp(x, t).

The relevant quantities are D and v, which define a characteristic time t∗ = D/v2 and a
characteristic length l∗ = D/v. We use t∗ and l∗ to non-dimensionalize the problem; all
quantities are dimensionless in the rest of this section. The dimensionless diffusion equation
is

∂tp(x, t) = ∂2
xp(x, t)− ∂xp(x, t) (1)

with initial condition p(x, 0) = p0(x) for 0 � x � L, and boundary condition p(0, t) =
p(L, t) = 0 for t � 0, where L is the system width, and we start at t = 0. The absorbing
boundary condition is equivalent to the probability being zero at the boundaries [3]. Let us

4 The detailed analysis of the one-particle motion and the segregation of binary granular mixtures using this method
will be published elsewhere.
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Figure 2. Simulation result: the probability distribution of the horizontal position of a particle
which is started from x = 0 at zero time, in an infinitely wide system (natural boundary

condition). The dashed curves show the theoretical prediction 1√
4πDt

e−
(x−vt)2

4Dt , which is the

probability distribution of a drift–diffusing particle in one dimension. The velocity v and diffusion
constant D are determined by line fitting: 〈x(t)〉 = vt and σ(t)2 = 2Dt (see inset), where
σ(t)2 = 〈x(t)2〉 − 〈x(t)〉2. The fitted values are v = 1.42 cm s−1 and D = 4.42 cm2 s−1. The
parameters of the simulation are the following: A = 2 mm, f = 28 Hz, w = 6 mm, h = 8.5 mm,
a = 0.07, r = 1.2 mm, ε = 0.45, µ = 0.1 and β0 = 0.
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Figure 3. The same as in figure 2, except that the restitution coefficient of the particle is ε = 0.6.
The fitted diffusion parameters are v = −1.60 cm s−1 and D = 11.43 cm2 s−1. Note that the
direction of the velocity is the opposite, which makes possible the segregation of a granular mixture
consisting of particles with ε = 0.45 and 0.6.
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define operator F = ∂2
x − ∂x with DF = {φ(x)|φ(0) = φ(L) = 0} ∩ D2, where D2 is the set

of twice-differentiable functions. If φλ ∈ DF is an eigenfunction of F with eigenvalue λ, then
exp(λt)φλ is a solution of (1). If we had an orthonormal and complete eigensystem of F , we
could give the solution of (1) immediately. It is a problem that F is not Hermitian, as far as the
usual scalar product

∫ L

0 φ∗1 (x)φ2(x) dx is concerned. However, F is Hermitian if the scalar

product is calculated with kernel function e−x : 〈φ1|φ2〉 ≡
∫ L

0 e−xφ∗1 (x)φ2(x) dx. It is useful to
write F in the form F = ex∂xe−x∂x . The verification of the fact that F is Hermitian with scalar
product 〈·|·〉, i.e. 〈φ1|Fφ2〉 = 〈Fφ1|φ2〉, is straightforward: the effect of operator F can be
shifted from φ2 to φ1 using two consecutive partial integrations, during which the surface terms
disappear, because φ1(x) and φ2(x) are zero on the borders. Since F is Hermitian with scalar
product 〈·|·〉, it has a complete orthonormal eigenfunction system with real eigenvalues. It is

straightforward to verify that the eigenfuctions arepk(x) =
√

2
L

ex/2 sin
(
kπ
L
x
)

with eigenvalues

λk = −
(
kπ
L

)2− 1
4 (k ∈ N

+). The solution of (1), if p0(x) is the initial probability distribution,
is p(x, t) = ∑∞

k=1〈p0|pk〉pk(x)eλkt . In the rest of the paper we investigate the case when
the initial distribution is a Dirac delta-function at αL (0 < α < 1). The weights are then

〈δ(x − αL)|pk〉 =
√

2
L

e−
αL
2 sin(kπα), and the probability distribution is given by

p(x, t) = 2

L
e

x−αL
2

∞∑
k=1

sin(kπα) sin

(
kπ

L
x

)
e
−

[
( kπ

L )
2
+ 1

4

]
t

= 1

2L
e

x−αL
2 − t

4

{
ϑ3

[(
α − x

L

)
π

2
, z(t)

]
− ϑ3

[(
α +

x

L

)
π

2
, z(t)

]}
(2)

where we introduce the notation z(t) = e−
π2

L2 t and the theta function ϑ3(r, q) = 1 +
2

∑∞
k=1 cos(2rk)qk2

to obtain a closed form [15]. An important quantity is the rate of
absorption, i.e. the probability current at the borders. Using the notation ϑ ′3(r, q) ≡
∂r̃ϑ3(r̃, q)|r̃=r , the probability current j (x, t) = −∂xp(x, t)+p(x, t) at the right- and left-hand
ends is

j→(t) ≡ j (L, t) = π

2L2
e

(1−α)L
2 − t

4 ϑ ′3

(
π [α + 1]

2
, z(t)

)

j←(t) ≡ −j (0, t) = − π

2L2
e−

αL
2 − t

4 ϑ ′3
(πα

2
, z(t)

)
.

(3)

With the minus sign in its definition, j←(t) � 0.
The splitting probability, i.e. the probability that the particle is absorbed finally by the

left- or the right-hand boundary, n← =
∫∞

0 j←(t) dt and n→ =
∫∞

0 j→(t) dt , and obviously
n← + n→ = 1. Using the integral formula∫ ∞

0
e−asϑ ′3

([x
l

+ 1
] π

2
, e−

π2

l2
s

)
ds = 2l2

π

sinh(x
√
a)

sinh(l
√
a)

(4)

which holds for |x| < l [16], we obtain

n← = e−αL − e−L

1− e−L
and n→ = 1− e−αL

1− e−L
. (5)

Another important quantity is the mean first-passage time, i.e. the average time it takes for the
particle to be absorbed by any of the boundaries. The probability distribution of this time is
just the total probability current at the boundaries: jout = j← + j→. The mean first-passage
time is then τ = ∫∞

0 tjout(t) dt . The calculation of τ is straightforward using the derivative
of (4) w.r.t. a, and the result is

τ = L(n→ − α). (6)
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Figure 4. The time evolution of the probability distribution, when L = 2 and α = 0.3. Note
the difference between the probability distribution here and in figures 2 and 3, which is due to the
different boundary condition. Inset: the probability current at the left- and right-hand boundaries.

There is another way to calculaten→ and τ , in which there is no need for an explicit formula
for the time-dependent probability distribution or the current at the borders [2]. An ordinary
differential equation can be written for n→, which, using our notation, is−L∂αn→+∂2

αn→ = 0
with boundary condition n→|α=0 = 0 and n→|α=1 = 1. By direct substitution one can verify
that (5) is the solution. A similar equation can be written for the mean first-passage time:
−L∂ατ + ∂2

ατ = −L2 with boundary condition τ |α=0 = 0 and τ |α=1 = 0. It is easy to check
that (6) is the solution for this equation.

3. Discussion of the results

First we summarize our results with dimensionalized parameters. The probability density is

p(x, t) = 1

2L
e−

v(2[αL−x]+vt)
4D

{
ϑ3

([
α − x

L

]
π

2
, z̃(t)

)
− ϑ3

([
α +

x

L

]
π

2
, z̃(t)

)}
(7)

with the notation z̃(t) ≡ e−π
2Dt/L2

. The currents at the right- and left-hand borders are

j→(t) = πD

2L2
e−

v(2[α−1]L+vt)
4D ϑ ′3

(
[α − 1]π

2
, z̃(t)

)

j←(t) = −πD

2L2
e−

v(2αL+vt)
4D ϑ ′3

(απ

2
, z̃(t)

)
.

(8)

The splitting probability is n→ = 1− e−αLv/D

1− e−Lv/D
, and the mean first-passage time is

τ = L(n→ − α)/v. In the v = 0 case (7) and (8) are valid with v = 0 substitution, while
for the splitting probability and the mean first-passage time we can take the v → 0 limit and
obtain n→ = α and τ = α(1− α)L2/(2D).

Since the splitting probability is the most important quantity as far as the segregation
is concerned, we analyse it in detail. Its dependence on all four parameters v, D, α and L
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Figure 5. Dependence of the splitting probability n→ on all the parameters. The default values
for the parameters are v = 1.42 cm s−1, D = 4.42 cm s−1 (the fitted values in figure 2), α = 0.5
and L = 20 cm.

can be seen in figure 5. It can be easily understood that with larger (positive) velocity or
smaller diffusion constant the right arriving probability is closer to 1. It is also trivial that if
the starting position is closer to the right-hand end then n→ is larger. However, to understand
the dependence on the system width, we have to recall that in the case of drift-diffusion with
natural boundary conditions (i.e. when the system is infinitely wide) the expectation value
of the position is proportional to the time, while the dispersion is proportional only to the
square root of time. Although this is not exactly true in the case of absorbing boundaries, the
tendencies remain the same; therefore, in the case of v > 0, the larger the system width is,
the lower the fraction of the probability that is absorbed by the left-hand boundary, and, as a
consequence, the rest is absorbed by the right-hand boundary.

4. An application: segregation

As mentioned in the introduction, our motivation for the above calculations has been the
application for segregating binary granular mixtures. For this purpose, now let us investigate
the segregation properties of the system.

We begin with an illustrative example, the case of symmetric initial condition, α = 1/2.
Denoting v/D by u, the splitting probabilities are

n← = 1

1 + euL/2
n→ = 1

1 + e−uL/2
. (9)

For definiteness, let us have a particle withu > 0, for example. For a smallL, both probabilities
are around 1/2:

n← ≈ 1/2− uL/8 n→ ≈ 1/2 + uL/8. (10)

For large L,

n← ≈ e−uL/2 n→ ≈ 1− e−uL/2; (11)
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they tend to zero and one, respectively, in an exponential way in L. We can see that, for a
small L, it is the diffusion, the left–right symmetric effect, that determines the left and right
probabilities. On the other side, for large L, the drift becomes the dominating effect: it drives
the particle to the direction of u with a probability that differs from 1 only by an exponentially
small amount. This latter phenomenon makes it possible to use the system for segregation.

To study the segregation properties in more detail, now let us have two types of particles,
withu1 < 0 < u2. We neglect the interaction between particles, which is a good approximation
at low particle numbers. The expectation is that the particles with u1 will tend to move to the
left-hand end and the others to the right-hand end. Therefore, we can characterize the quality
of the segregation with the quantity

q = n←(u1) + n→(u2). (12)

Let us put the question of whether, for a given L, it is possible to choose an optimal α, i.e.
where q is maximal5.

Investigation of the function q(α) shows that it indeed has one maximum, at

αoptimal = 1−
ln u1(eu2L−1)

u2(eu1L−1)

(u2 − u1)L
. (13)

(For an illustration of the typical dependence of q on α, see figure 6.)
For practical purposes, we are interested in large L. In this asymptotic region, with the

notation λ = u2/|u1|,

αoptimal ≈ 1

1 + λ
+

ln λ

1 + λ

1

|u1|L =
1

1 + λ
+ O

(
1

L

)
. (14)

Consequently,

n←(u1) ≈ 1− c1e−
λ

1+λ |u1L|

n→(u2) ≈ 1− c2e−
1

1+λ |u2L| (15)

5 Another natural choice to describe the quality of the segregation is q ′ = n←(u1)n→(u2). Since the two functions,
q(α) and q ′(α), prove to differ only very slightly and lead to almost identical αoptimal, the two quantities are practically
equivalent choices.
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where c1 = λ
1

1+λ and c2 = λ
−λ
1+λ . Therefore, we can see that, for large L, it is possible to choose

such an optimal α that both segregation probabilities are exponentially close to 1 (as functions
of L), the quality of the segregation is exponentially close to perfect.

5. Summary

We have presented a complete solution to the problem of one-dimensional drift-diffusion (with
constant external force) between two absorbing boundaries: the probability distribution, the
probability current at the boundaries (i.e. the rate of absorption), the splitting probability and
the mean first-passage time were calculated. The results were applied to predict the quality
of granular segregation in a vertically vibrated ratchet. We found that if the components have
opposite drift velocities, the quality of the segregation of a binary mixture increases rapidly
with increasing system width, and, as a limiting case, perfect segregation can be achieved.
Furthermore, when the system width is fixed, we found the place where the granular mixture
should be loaded into the system to obtain the best segregation quality.
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